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ABSTRACT

Distributed Sensor Networks (DSN) has emerged as a sensing paradigms in the structural

egineering field due to the application of Structural Health Monitoring (SHM) for large-scale

structures which results in accurately diagnosing the health of structures and enhancing the re

liability and robustness of monitoring systems. The multisensor network greatly enhances the

feasibility of applying SHM and also provides awareness of structural damage. In this work,

we develop data-driven method for the diagnosis of damage in mechanical structures using an

array of distributed sensors. The proposed approach relies on comparing intrinsic geometry

of data sets corresponding to the undamage and damage state of the system. This approach

assumes no knowledge of underlying models of the different data sources. We use spectral

diffusion map approach for identifying the intrinsic geometry of the data set. In particular,

time series data from distributed sensors is used for the construction of diffusion map. The

low dimensional embedding of the data set corresponding to different damage level is done

using singular value decomposition of the diffusion map to identify the intrinsic geometry. We

construct appropriate metric in diffusion space to compare the low-dimensional data set corre-

sponding to different damage cases. The developed algorithm is applied for damage diagnosis

of wind turbine blades. Towards this goal we developed a detailed finite element-based model

of CX-100 blade in ANSYS using shell elements. The damage in the blade is modeled by

degrading the material property which in turn results in change of stiffness. One of the main

challenges in the development of health monitoring algorithms is the ability to use sensor data

with relatively small signal to noise ratio. Our developed diffusion map-based algorithm is

shown to be robust to the presence of sensor noise. The proposed diffusion map-based algo-

rithm can not only account for data from different sensors but also different types of sensor in

the form of sensor fusion hereby making it attractive to exploit the distributed nature of sensor

array. The distributed nature of sensor array is further exploited to determine the location of
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damage on the wind turbine blade. Our extensive simulation results show that our proposed

algorithms can not only determine the extend of damage but also the location of the damage.
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CHAPTER 1. INTRODUCTION

Structural health monitoring (SHM) of large-scale systems, or mesosystems, including en-

ergy structures (e.g., wind turbine, dam), transportation infrastructures (e.g., bridge, pave-

ment), and mechanical systems (e.g., aircraft, ship) is a difficult task due to the large geometries

under inspection. Nevertheless, SHM at the mesoscale may have strong economic benefits. It

has the potential to enable condition-based maintenance, instead of traditional time-based or

breakdown-based strategies that are far less effective in terms of prolonging structural life. In

particular, economic benefits for wind turbine blades are well understood Chang et al. (2003);

Ciang et al. (2008); Adams et al. (2011).

To cope with the mesoscale challenge, off-the-shelf sensing strategies need to be adapted

to provide large-area sensing capabilities Kharroub et al. (2015). A solution is to deploy

distributed sensor networks (DSNs), which include wireless Swartz et al. (2010); Pakzad et al.

(2008) and multivariate Wang et al. (2006); Torres-Arredondo et al. (2013); Malekzadeh et al.

(2013); Garćıa et al. (2015) networks, as well as dense arrays of sensors Laflamme et al. (2013,

2012b); Ubertini et al. (2014); Glisic and Verma (2011); Ruan et al. (2014) that mimic biological

skins, where changes in a local state can be monitored over a global area. The application of

DSNs for SHM purposes typically leads to a significant quantity of data that needs to be

processed strategically in order to obtain features related to structural condition. This is

generally done using physics-driven or data-driven methods. While physics-driven methods

typically lead to more accurate prognosis, they often rely on complex models that require long

computation time. Conversely, data-driven methods can be operated in real-time and can be

used to quickly detect a change in a condition, but yield results that may be difficulty to relate

to structural behaviors Farrar and Lieven (2007).

The objective is to develop a condition assessment method for mesoscale systems that
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leverages the utilization of DSNs and fuses sensor data into a condition index. We selected a

data-driven method due to the fast computational time that may lead to real-time applications.

The method is based on spectral diffusion maps. Diffusion maps belongs to unsupervised

learning algorithms dealing with a spectral analysis of non-linear data and requires no prior

knowledge regarding the appearance of damage, and no use is made of training data. With

this method, the intrinsic geometries of the data sets obtained from DSNs are compared to

identify potential changes in the system states, which would indicate damage. The intrinsic

geometry of the data set is obtained using the multiscale diffusion map approach developed

in Coifman et al. (2005). The diffusion-map method provides an embedding of the time-series

data set in the diffusion space to identify important lower dimensional dynamic features of

data. We construct appropriate metrics in the diffusion space to compare the embedded data

under normal and abnormal operating conditions.

In the following we provide a brief overview of literature on comparison of intrinsic geometry

of data sets. In Moniz et al. (2005), a multivariate attractor-based approach is used to detect the

presence and magnitude of damage in structures through the investigation of the response’s

phase-space constructed by a time delayed embedding. A metric is introduced to quantify

the damage-sensitive feature by comparing with the attractor of the undamaged structural

response. Ref. Overbey et al. (2007) used the attractor constructed from the undamaged state

to predict structural response, and identified damage as a change in the prediction error. An

approach Monroig (2009) applied the theory to large nonlinear systems by dividing the system

into a set of subsystems, and time series responses of each subsystem analyzed to identify

damage. The authors in Figueiredo et al. (2010) proposed to analyze nonlinear time series

using a multivariate autoregressive (MAR) approach in order to detect damage under varying

operational and environmental conditions. Ref. Liu et al. (2013) used a combined state-space

embedding strategy and singular value decomposition to detect structural damage. In Rabin

and Averbuch (2010), a diffusion map-based approach was used for detection of anomaly in

dynamic systems Rabin and Averbuch (2010). Ref. Huang et al. (2013) proposed a variation

of diffusion maps termed discriminant diffusion maps analysis (DDMA) machine condition

monitoring and fault diagnosis. The algorithm for diffusion map-based data comparison used
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in this thesis was first presented in Vaidya et al. (2005). In Coifman and Hirn (2014), the

theoretical basis for the construction and comparison of diffusion maps for family of data set

changing with respect to change in system parameters is provided.

The diffusion map-based approach presented in this thesis combines ideas from variety

of methods currently adopted for data-driven schemes for health monitoring such as spectral

graph theory, Kernel methods, and machine learning. One of the important advantages of

the proposed diffusion map-based approach is that it can be used for sensor data fusion. The

presented algorithms exploit the distributed nature of sensor data in the form of sensor fusion.

Comparison based on fused data from multiple sensors has the advantage that it is relatively

robust to sensor noise thereby making it attractive in dealing with sensors with small signal-to-

noise (SNR) ratio. Furthermore, DSN also provides an opportunity to localize the damage on

the structure. Most of damage localization methods are applicable at a localized area, but not

economically feasible in a large-scale structure Laflamme et al. (2012a). Damage localization

in structures allows for considerable reduction of expenses related to their operation as well as

increase in safety and longer lifespan. We show that our proposed approach successfully makes

use of DSN to localize the damage on a wind turbine blade. The main contributions of this

thesis are as follows. A nonlinear dimensionality-reduction framework using diffusion maps for

structural condition assessment based on the intrinsic geometries of the data is proposed. This

approach provides a low dimensional representation for a given set of heterogenous sensors

which combines all the sensor information and the metric constructed is used to measure the

connectivity in data points and achieves relatively robustly with respect to sensor noise. We

also demonstrate that the proposed approach is well suited for identifying and locating the

damage in the structures using DSN.
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CHAPTER 2. DIFFUSION MAP

In this chapter, we provide the background on diffusion maps, which constitute the basis of

our approach. The theory presented is a summary of work from Coifman et al. (2005); Lafon

(2004).

2.1 Diffusion Map and algorithm

The construction of diffusion maps starts with the construction of a kernel function, k(x, y),

on set of data points Γ, where x and y are data points and belongs to space Γ. The kernel

function k(x, y) is constructed satisfying the following properties:

• k is symmetric, i.e., k(x, y) = k(y, x)

• k is positivity preserving i.e., k(x, y) ≥ 0 for all x, y in Γ.

• k is positive semidefinite for all real valued bounded function f defined on the data set

Γ, ∫
Γ

∫
Γ
k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0, (2.1)

where µ is a probability measure on Γ

The kernel function k(x, y) is constructed based on local connectivity of data points and hence

capture the local geometry of data set. Several choices for the kernel k are possible, all leading

to different analyzes of data, we use the Gaussian or exponential form for the kernel function.

The kernel function is used for the construction of the global geometry of data. The first step

towards the construction of the diffusion map is to normalize the kernel function k(x, y) as

follows Chung (1997). For all x ∈ Γ

let v2(x) =

∫
Γ
k(x, y)dµ(y),
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and set

ã(x, y) =
k(x, y)

v2(x)
.

It follows from the construction that
∫

Γ ã(x, y)dµ(y) = 1. To ã we can associate a linear

operator on the data set Γ as follows:

Ãf(x) =

∫
ã(x, y)f(y)dµ(y). (2.2)

Since we are interested in the spectral properties of the operator, it is preferable to work with

a symmetric conjugate of Ã. We conjugate ã by v in order to obtain a symmetric form and we

consider

a(x, y) =
k(x, y)

v(x)v(y)
,

and the operator

Af(x) =

∫
Γ
a(x, y)f(y)dµ(y). (2.3)

The operator A is termed diffusion operator. Under very general hypotheses, the operator A

is compact and self-adjoint. Thus, by spectral theory, we have

a(x, y) =
∑
j≥0

λjϕj(x)ϕj(y), Aϕj(x) = λjϕj(x). (2.4)

where ϕj(x) are eigenfunctions of A corresponding to eigenvalue λj . Let am(x, y) be the kernel

of Am, then at the level of data points the kernel am(x, y) has a probabilistic interpretation as

a Markov chain with transition matrix a to reach y from x in m steps. Now define a mapping

Φ : Γ→ `2(N) as

Φ(x) = (ϕ0(x), ϕ1(x), ..., ϕp(x), ...),

mapping the data point x ∈ Γ into the Euclidean space (`2(N)), which we will call the diffusion

space. Each eigenfunction can be interpreted as a coordinate on the set. The diffusion distance

in the original space Γ can now be defined using the mapping Φ. In particular, diffusion distance

between two points x, y ∈ Γ after m time steps is defined as follows

D2
m(x, y) =

∑
j≥0

λmj (ϕj(x)− ϕj(y))2. (2.5)

Note that the diffusion distance between two points in the original space Γ is simply the

Euclidean distance in the diffusion space. The diffusion distance measures the local connectivity
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between the points in the underlying data set. Its value depends on the number of connecting

paths between data points.

The diffusion map is used to map coordinates between data and the diffusion space, and

can be exploited for dimensionality reduction. Dimensionality reduction can be conducted

from the embedding generated by the eigenfunctions. For a given accuracy δ we retain only the

eigenvalues λ0, ..., λp−1 that, when raised to the power m, exceed a certain threshold (related to

delta), and we use the corresponding eigenfunctions ϕ0, ϕ1, ..., ϕp−1 to embed the data points

in Rp.

2.2 Comparison of data sets using Diffusion Map

The underlying idea behind the comparison of data sets using the diffusion map approach

is adopted from Vaidya et al. (2005). For the simplicity of presentation, we will explain the

comparison procedure between two data sets X and Y . The procedure for comparison involving

multiple data sets is straight forward. Let X = {x1, x2, ..., xN} and Y = {y1, y2, ..., yN} be the

two data sets obtained in the form of time series from an experiment or model simulation. We

are assuming that the two data sets are of the same size, as this is our case of interest. However,

the approach can be extended to the case when data sets are of different sizes Coifman and

Hirn (2014). Using time-delayed coordinates, we embed the time series data in Rn, where n is

sufficiently large. Now we have N − n data points denoted by X̄ := {x̄1, x̄2, ..., x̄N−n}, Ȳ :=

{ȳ1, ȳ2, ..., ȳN−n}, where x̄k = (xk, xk+1, ..., xk+n−1) and ȳk = (yk, yk+1, .., yk+n−1). We denote

the union of these two data sets by Z = {X̄, Ȳ }. We use the following Gaussian kernel function,

k(zk, zj) = exp

(
−‖ zk − zj ‖

2

ε

)
, (2.6)

The parameter ε is important in the computation of the Gaussian kernel. It is highly data

dependent and specifies the size of the neighborhoods defining the local geometry of the data.

The smaller the parameter ε, the faster the exponential decreases and hence the weight function

in (2.6) becomes numerically insignificant as we move away from the center. It is easy to verify

that the Gaussian kernel satisfies all the properties of the kernel.
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From this kernel, we construct the diffusion operator or the diffusion matrix as follows.

Assuming the transition probability between points zk, zj is proportional to k(zk, zj), we can

construct the Markov matrix as follows

M(k, j) =
k(zk, zj)

p(zj)
(2.7)

where p(zk) is the normalization constant given by

p(zj) =
∑
k

k(zk, zj) (2.8)

Finally, the singular value decomposition is applied to M , yielding eigenvalues λ, which are

sorted in descending order, and the corresponding eigenvectors ϕ. The eigenvalues of M lie

in the range 0 to 1 due to normalization. Let {ϕ1, ϕ2, ..., ϕ2(N−n)} be the eigenvectors of the

diffusion matrix and {λ1, λ2, ..., λ(N−n)} be the corresponding eigenvalues. Retaining only the

first p eigenvectors and eigenvalues (p = max{l ∈ N such that |λl| > δ|λ1|}, δ > 0 Coifman

and Lafon (2006)) we can embed the data set Z in a p-dimensional Euclidean diffusion space,

where {ϕ1, ..., ϕp} are the coordinates of the data points in the Euclidean space. Note that

typically p� n and hence we obtain the dimensionality reduction of the original data set. For

some index j, the first N − n elements of the eigenvector ϕj are the j-th coordinate in the

diffusion space of the N −n data points in X, while the remaining N −n elements are the j-th

coordinate in the diffusion space of the data set Y . Denote the eigenvector on data set X by

ϕX and data set Y by ϕY :

ϕ :=

 ϕX

ϕY

 .
Note that the k-th elements of the j-th eigenvectors are given, respectively, by

ϕXkj := ϕXj (x̄k), ϕYkj := ϕYj (ȳk). (2.9)

We can use various metrics for the comparison of data sets in diffusion space using the above

eigenvectors. We define

φXk =

 p∑
j=1

λj(ϕ
X
kj)

2

 1
2

, φYk =

 p∑
j=1

λj(ϕ
Y
kj)

2

 1
2

(2.10)

and propose following metric for the comparison of data sets.
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1. Weighted average diffusion distance

Davg =

[
1

N − n

N−n∑
k=1

φXk

]
−

[
1

M − n

M−n∑
k=1

φYk

]
(2.11)

2. Pointwise diffusion distance

Dp =
1

N

N∑
k=1

∣∣φXk − φYk ∣∣
φXk

. (2.12)

This metric is sensitive to the ordering of the data set. Other metric can also be constructed

depending upon application Moeckel and Murray (1997). For our proposed application of

damage diagnosis of wind turbine blades, we employ the pointwise diffusion distance for data

comparison in the diffusion space. This metric measures the diffusion distance between the

data points in the original space and provides robust information on the geometry of the data

set. The pointwise distance metric gives us satisfactory results. The proposed approach for the

comparison of two data sets can be extended to multiple data sets in a straight forward manner

Vaidya et al. (2005). For our proposed application, the different data sets will correspond to the

different damage levels of a wind turbine blade. While the above procedure helps us compare

different data sets corresponding to different damage levels, the procedure can be extended for

comparison of data sets from multiple sensors. This can be accomplished using sensor fusion.

We consider the case where the wind turbine blade is equipped with an array of distributed

sensors. The goal is to fuse data from multiple sensors for damage diagnosis and also for damage

localization.

2.3 Multiple sensor fusion

The procedure for sensor fusion in reconstructing the state of dynamical systems using

diffusion maps is described in Keller et al. (2010). The strategy is to construct hierarchies of

diffusion maps for a system consisting of heterogeneous sensors, where each sensor can be pa-

rameterized and normalized in its intrinsic diffusion coordinates, and a new graph is generated

by combining all of the relevant diffusion coordinates from all the sensors. The algorithm for

the multiple sensor fusion as it applies to our problem of damage detection is given below. The
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algorithm closely follows one used in Rabin and Averbuch (2010) except for the comparison

metric that is defined above in Eq. (2.12). For simplicity and conciseness, we will only consider

the case of data fusion from three sensors.

2.3.1 Comparison of different damage data sets using multiple sensors

1. Let Xi = {xi1, xi2, ...., xiN}, Yi = {yi1, yi2, ...., yiN},and Zi = {zi1, zi2, ...., ziN} be the data

sets from three sensors. The index i = 0, 1, 2, 3... is the index for damage, with 0 is for

undamaged case and N is the length of each data set. Using time delayed coordinates,

we embed Xi for each i in Rn where n is sufficiently large.

2. We have N − n data points for individual time series X̄i := {x̄i1, x̄i2, ...., x̄iN} where

x̄ik = (xik, x
i
k+1, ...., x

i
k+n−1) We denote the union of these data sets X̄0, X̄1, .... as X̂ =

{X̄0, X̄1, ....}

3. We apply the procedure outlined above to other sensors Y,Z, and we get Ŷ and Ẑ

4. We apply the diffusion map to data set X̂. The embedding coordinates of X̂ are scaled

and are denoted by Ψ1 as Ψ1(x) = ( λ1ψ1(x)
‖λ1ψ1(x)‖ ,

λ2ψ2(x)
‖λ2ψ2(x)‖ ,

λ3ψ3(x)
‖λ3ψ3(x)‖ , ....)

5. We repeat the above procedure for all of the different data sets Ŷ and Ẑ, and the scaled

embedding coordinates for Ŷ and Ẑ is given by Ψ2 and Ψ3.

6. The scaled diffusion coordinates are combined into a matrix form given byW = {Ψ1,Ψ2,Ψ3}.

The diffusion map is applied again on this matrix W .

7. We retain only the first p eigenvectors (p� n) of the diffusion matrix and {λ1, λ1, ...., λp}

corresponding eigenvalues, so that we can embed the data set W in a p-dimensional

Euclidean diffusion space.

8. The resulting eigenvectors can be decomposed in the form of damage indices as ϕ̂ =

[ϕ̂0; ϕ̂1; ϕ̂2; ....]
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9. The pointwise diffusion distance is applied on these sets of eigenvectors in order to capture

the varying degrees of damage in the system.

A schematic of the sensor fusion approach is shown in Figure 2.1 using n sensors.

Figure 2.1 Sensor fusion using n sensors
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CHAPTER 3. WIND TURBINE BLADE MODELING

In this chapter, we present the numerical model used for the numerical analysis of the

proposed method.

3.1 ANSYS model

The model consists of a wind turbine blade equipped with a DSN and subjected to various

wind loads, described in what follows.

The wind turbine blade is modeled after the 9 m CX-100 carbon fiber blade described in

Berry and Ashwill (2007). This particular blade has been widely studied White et al. (2010);

Dervilis et al. (2014); Berry and Berg (2008). A simplified finite element model was generated

in ANSYS using shell elements. It consists of a tapered cantilever plate of 9 m length, 1.03 m

largest width, and 0.035 m thickness, as shown in Fig. 3.1. The blade is a composite assembled

from 3 different layers constituted with 2 different materials and 3 different orientations, as

listed in Table 3.1.

(a) (b)

Figure 3.1 Wind turbine blade dimensions (mm) (a) top view; and (b) cross section.
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Table 3.1 Material properties

Layer Material (orientation) Ex (GPa) Ey (GPa) Gxy (GPa) density (kg/m3) thickness (mm)

1 Carbon-fiberglass fabric (+45◦) 84.10 8.76 4.38 3469 13

2 C520 fiberglass (0◦) 37.30 7.60 6.89 1874 9

3 Carbon-fiberglass fabric (−45◦) 84.10 8.76 4.38 3469 13

The blade was modeled to match the first flatwise and edgewise frequencies of the experi-

mental values reported in Ref. Berry and Berg (2008). The model and experimental values are

compared in Table 3.2. The first frequencies of the model agree with the experimental values.

Table 3.2 Comparison of frequencies

direction model (Hz) experimental (Hz) Berry and Berg (2008) difference (%)

flapwise 4.16 4.56 −8.8

edgewise 8.02 7.49 +7.1

3.2 Damage cases

Five different damage locations and severities are considered in the simulations. They

are schematized in Fig. 3.2, in which the red-dashed regions represent the damaged element.

Damage locations 1 to 4 (Fig. 3.2(a)-(d)) vary from the root (Fig. 3.2(a)) to the free end

(Fig. 3.2(d)) of the blade, while damage location 5 (Fig. 3.2(e))) is a combination of damage

locations 1 and 3. The blue dots represent the location of 9 virtual strain gauges constituting

the DSN. They are equally spaced at 1 m and located in the middle of blade. Fig. 3.2(f) shows

the cartesian coordinates of the nine virtual strain gauges.

The simulated damage is a loss of stiffness arising from delamination, a damage mode

commonly studied in wind turbine blade literature Adams et al. (2011). It is modeled as a

change in the stiffness of laminate layer 2. Five different damage severities are considered under

damage location 1 (Fig. 3.2(a)), which correspond to changes in the first natural frequencies of

1%, 2%, 5%, 10% and 15% (35.5%, 54.8%, 80.6%, 92.3% and 96.7% stiffness loss in damaged

elements in the strong bending direction). The damage localization study compares all locations
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(a)

(b)

(c)

(d)

(e) (f)

Figure 3.2 Damage locations under study: (a) location 1; (b) location 2; (c) location 3; (d)

location 4; (e) location 5; and (f) sensors location.
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under constant damage corresponding to a 10% change in the first natural frequency.

3.3 Wind Load model

The natural variability of the wind loading on the blade is generated using the procedure

described in Ackermann et al. (2005). The wind speed Ws applied to the wind turbine blade

is constituted from four components:

Ws = Wa +Wr +Wg +Wt, (3.1)

where Wa is the average speed, Wr is the ramp component, Wg is the gust component, and Wt

is the turbulence. The ramp component Wr is taken as

Wr =


0 if t < Tsr

wramp if Tsr < t < Ter

0 if t > Ter,

(3.2)

where wramp = Aramp
(t−Tsr)

(Ter−Tsr) with Aramp being the amplitude of wind speed ramp, Tsr and

Ter are the starting and end time of wind speed ramp, respectively. The wind gust Wg is taken

as

Wg =


0 if t < Tsg

wgust if Tsg < t < Teg

0 if t > Teg,

(3.3)

where, wgust = Agust

(
1− cos

(
2π
(

t−Tsg
Teg−Tsg

)))
with Agust being the amplitude of wind gust,

Tsg and Teg are the starting and end time of wind gust, respectively. Wt is modeled as a

one-dimensional random process and is characterized by the following power spectral density

function P (f) for a given frequency f Ackermann et al. (2005)

P (f) = l ·Wa

(
ln

(
h

z0

)2
)−1(

1 + 1.5
f · l
Wa

)−5/3

,
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Figure 3.3 Three different realizations of wind pressure.

where l is the turbulence length scale, h is the height at which the wind speed is applied, and

z0 is the roughness length. The wind pressure acting on the blade is directly obtained from Ws

using Van der Woude and Narasimhan (2010)

Wp = 0.5ρW 2
s , (3.4)

where ρ is the air density. The variability in wind speed at different heights across the blade

is taken into account using the power law Peterson and Hennessey Jr (1978). The resulting

wind pressure obtained (3.4) is applied onto the top surface of the wind turbine blade model.

Table 3.3 lists the values of the selected parameters for the generation of different wind load

realization. In order to take into account the uncertainty in wind speed, each damage case is

simulated under three different wind pressure realization using the parameters listed in Table

3.3. A total of 30 different realizations are considered for the analysis. Fig. 3.3 shows three

different realizations of wind pressure.
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Table 3.3 Model parameters for wind load generation.

Parameter Value

Tsr = Tsg 50 s

Ter 150 s

Teg 200 s

h 70 m

Aramp 4 m/s

Agust -3 m/s

l 600 m

z 0.01m

Wa 11.5 m/s
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CHAPTER 4. SIMULATION RESULTS

In this chapter, we study the performance of the diffusion map algorithm at detecting

different damage levels and locations.

4.1 Different damage levels

Figure 4.1 shows the study of the eigenvalues of the diffusion map obtain from sensor 1

only, for the undamaged blade subjected to a wind load realization. Other than the first

eigenvalue at one, there are three dominating eigenvalues (choosing δ = 0.01, we have p = 3,

refer to paragraph below equation 8). Thus, the data set can be approximated using the three

dominant eigenvectors of the diffusion map. The eigenvector plot corresponding to first three

dominant eigenvalues for all the damage cases is shown in Fig. 4.1(b).

The exercise is repeated for sensor 2, which is the closest to the damage. Similarly to sensor

1, the study of the eigenvalues (Fig. 4.2(a)) shows three dominant eigenvalues. A plot of the

eigenvectors of sensor 2 data set is shown in Fig. 4.2(b). A comparison between the eigenvector

plots for sensor 1 (Fig. 4.1(b)) and sensor 2 (Fig. 4.2(b)) shows a more apparent change in the

magnitude of the eigenvectors as the damage increases. This is largely attributed to the larger

change in strain readings from sensor 2, as it is closer to the damage.

Figure 4.3 is a plot of the pointwise diffusion distances Dp for all the nine sensors as a

function of different damage cases, where 0% corresponds to the undamaged case. As noted

previously, three different wind load realizations were simulated for each damage case. The

average data from three different wind realizations for each damage case is used for calculating

the pointwise diffusion distance using the proposed approach. The results for each sensor

shows an increasing Dp for an increasing damage level. The pointwise diffusion distance Dp
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Figure 4.1 Sensor 1: (a) eigenvalues; (b) three dimensional embedding.

can therefore be utilized to detect and evaluate the gravity of damage. Sensor 2 (sen 2) exhibits

a notably higher magnitude of Dp compared with other sensors. This demonstrates that Dp

can also be utilized to localize damage.

The sensor fusion strategy described in chapter 2 can be used to provide a direct measure

of damage. In Fig. 4.4, the information from all the 9 sensors is fused. Results show an

increasing pointwise diffusion distance with increasing damage level. A relationship between

DSF and damage levels could be established to create a useful damage index, enabling damage

prognosis.

Results discussed above demonstrate that the embedding of the map can be used for damage

detection. This is also true for a simple comparison of strain readings. For instance, take

an output-only strain comparison algorithm that consists of comparing the relative response
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Figure 4.2 (a) eigenvalues; (b) three dimensional embedding; (c) strain measured by sensor

1; (d) strain measured by sensor 2.

between two sensors through events. Assuming that the response of the dynamic system is

largely dominated by the first mode (not to confuse with dominating eigenvalues of the diffusion

map), the relative strain εi/εj between two points i and j remains approximately constant.

Thus, we can write a performance index J :

J =

∣∣∣∣∣∣
(

K∑
k=1

si,k
sj,k
−

K∗∑
k=1

s∗i,k
s∗j,k

)(
K∗∑
k=1

s∗i,k
s∗j,k

)−1
∣∣∣∣∣∣ (4.1)

where si,k is the signal of the sensor i at time k, which is compared with sj,k, the signal of sensor

j at time k, over the time series K. The star represents data associated with the undamaged

case. This performance index J represents the change in the relative response between two

sensors. Note that sj,k might not be limited to one sensor in the case where the comparison is

conducted between two neighbors. The study on damage cases is repeated using this algorithm,

where sensor i is compared with neighbors i± 1 for i = 2, 3, ..., 8 and i+ 1 for i = 1 and i− 1

for i = 9. Figure 4.5 plots the value of J per sensor for different damage cases. Results show
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Figure 4.3 Pointwise distance for all sensors.

that damage is between sensors 1 and 2 or sensors 2 and 3 (highest J values). Also, similarly

to the diffusion map algorithm, the J index can be used to detect, localize, and evaluate the

gravity of damage. The comparison of the diffusion map algorithm with this simple study of

the relative response will be useful, later in this section, to demonstrate the superior robustness

of the proposed method.

4.2 Different damage locations

To further demonstrate the capacity of the diffusion map algorithm at localizing damage,

the algorithm is simulated for the other damage locations discussed in section 3.2. Figure 4.6 is

a plot of the pointwise diffusion distance values obtained by comparing against the undamaged

cases, as a function of each sensor. The magnitude of Dp corresponding to sensor 2 is larger

compared to all the sensors for location 1, sensor 3 for location 2, sensor 4 for location 3,

sensor 5 for location 4, and sensors 2 and 4 for location 5. These values correspond to the

closest sensors for each damage case, showing that the proposed methodology performs well

at localizing each damage. The drift of that occurs at the end of the blade for each damage

location is attributed to differences in the strain magnitudes with respect to the undamaged

case.
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Figure 4.4 Pointwise distance using sensor fusion.

4.3 Robustness

The robustness of the diffusion map algorithm with respect to noise is investigated. Data

sets are generated with different levels of noise: 0.1%, 1%, 5%, and 10%. The noisy data

snoise(t) is generated from the actual data set sactual(t):

snoise(t) = sactual(t) + σnoiseξ(t) (4.2)

where the noise variance is given by σ2
noise =

σ2
signal

SNR and ξ(t) is a normally distributed random

variable. The value of SNR is varies to add different levels of noise to the actual data set.

Figure 4.7 shows the diffusion distances at different damage levels under these levels of noise.

At 0.1% and 1% noise levels, it is clear that sensor 2 has the largest value for Dp, enabling

damage localization. However, beyond 5% noise, damage below 1% is difficult to localize. At

10% noise, damages under 1% are difficult to localize. Nevertheless, damages cases at and

beyond 5% changes in the dominating frequency are clearly identified, even at a 10% noise

level.

The study can be extended to the relative strain comparison algorithm discussed above.

Figure 4.8 shows the evolution of performance index J as noise is increased. It becomes rapidly

difficult to detect and localize data using this technique, which further exhibits the advantageous
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Figure 4.5 Performance J for various sensors.

Figure 4.6 Pointwise distance for all sensors for damage localization.
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Figure 4.7 Pointwise distance for different noise levels (0.1%, 1%, 5%, 10%).
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robustness of the proposed method.

Figure 4.8 Performance J : (a) 0.1% percent; (b) 1% percent (c) 5% percent (d) 10% percent.
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CHAPTER 5. CONCLUSION

In this work, we proposed a new approach enabling damage detection and localization on

mesosystems. The approach consists of utilizing a sensor network combined with a spectral

diffusion map-based method. With the diffusion maps, the intrinsic geometries between two

data sets are compared, and a change in these geometries is an indicator of damage. The

magnitude of such change can be used to compare the magnitude of damage, the first step

towards prognosis. By comparing the diffusion distances at each sensor, it is also possible to

localize damage. An algorithm for data fusion as been presented, which enables the combination

of multiple data sets from a number of sensors, which may measure different states, for damage

diagnosis.

The proposed method has been investigated via numerical simulations. These simulations

were conducted on a realistic blade model subjected to different wind realizations. Different

damage cases and localizations have been used to study the performance of the algorithm.

Results showed that, without noise, the method was able to locate and detect damage as low

as 0.1%. In the presence of noise, the method was able to locate and detect a 0.1% damage

under a 1% noise level, and a 5% damage under a 10% noise level. Results were also compared

with a simple comparison of relative responses between sensors, which failed at providing

an acceptable damage detection and localization performance under noise. The data fusion

algorithm was successful at providing an overall measure of damage.

This study demonstrated critical advantages of the proposed approach. First, the spectral

diffusion map-based method can be combined with DSNs to locate and detect damage. Second,

it can be used to fuse information from multiple sensors to provide a numerical value linked

to a measure of damage gravity. Third, it is robust with respect to noise. It follow that the

proposed approach has great potential for structural health monitoring of mesosystems.
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